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Ben-Zion & Sammis (2003)

What is PFDHA?

* Probabilistic fault
displacement hazard analysis

e Characterize the probability
of distributed faulting

Background on PFDHA
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Applications of PFDHA

* Distributive infrastructure
* Roads
* Pipes — oil, water, utilities
* telecommunicates

* Buildings already situated near faults.

Holds importance.
for designing
more resilient
cities
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Introduction

« Aim:
« Use high-res. geodetic technigues to image fault zone + distribution of
faulting to get improved probabilities.

Field survey
measurements

 Motivation

» Current PFDHA models constrained from traditional field data. Geodetic
data - more data + lower uncertainty - better predictive power.

© 2018. All rights reserved. 4



Outline

» Background: current PFDHA + data
limitations

» Geodetic Imaging method

* How we measure distributed faulting
* How we constrain probabilities

* Preliminary results

* What's next...



Renewed efforts in PFDHA

Fault Displacement

Hazards Analysis
Y Workshop

OY®

December 8 - 9, 2016 Menlo Park, CA

e 2016 USGS workshop — FDHA
* Faults2SHA Working Group - Bridge gap between observationalists +

modelers to improve reliability of fault hazard assessment.
« UCLA

 |IPGP - Paris
* ltaly
e Aim:

* Update fault database from recent earthquakes
* Use new data to improve PFDHA Lngdels —> provide more reliable

ts reserved.

estimates of hazard to risk modelers and engineers



Current approach to PFDHA

Petersen et al. (2011)
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1. Gather + compile lots of field observations of faulting
2. Look at how displacement ‘attenuates’ away from main primary fault

3. Use fault trace mapping taconstrain:prabability faulting occurs 7



PFDHA output

Hazard curve (160 m away from
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* Hazard curve = annual frequency of occurrence of faulting at some distance
from the fault.

e Annual frequency is 0.001 (yrs), or 0.1% in 1 yr, of experiencing 1 m of
displacement or more at a distance (160 m) away from primary fault.

* Displacement map: 10% probability:of:exceedance in 50 years. 8



Data limitations for PFDHA
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e Field data constrain: attenuation of distributed
faulting with distance.
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Current Data Limitations: Sparse measurement
F|eld trace mapplng | Field offsets

ar-C

— /‘\ 1
: 250m_— . - L
e Challenging to =—— ¥\ ..

measure
offsets
without clear
cultural or
geomorphic
features




Current Data Limitations: Uncertainty &
Subjectivity

6 7m

Scharer et al. (2014)

* Measuring offset geomorphic feature requires experience

* Interpretation of how to restore offset/ matching features across fault
varies

* How to apply uncertainty, {min/max,.2,sigma) and how much varies 11



New approach: Use geodetic
imaging data

“ciiie-c 0 1« InSAR good at capturing
g SRR far-field surface motion.

e » Decorrelates in near-field
Sl Tt | - poor constraint

« Complementary
methods: Image
correlation + lidar
differencing

— -~ - -~ R, R L \

. «GPS
— > InSAR 4

Fialko (2009) © 2018. All rights reser 12
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http://www.opentopo.com/

Optical image correlation (COSI-Corr)

Before and After East-west North-south

| .
M, 7. 8 Kalkoura NZ = m 5
2 km Sensitive to horizontal Noise = 1/10%" image resolution
motion e.g., Landsat =15m

Can resolve motion of 1.5 m
© 2018. All rights reserved. 13



Processing overview

OXVDCOT+=0® 1 ®=T

cQ® I —

Inputs:

Raw images
Orbits, platform attitudes,
camera model
Digital Elevation Model

Orthorectification:

Images must superimpose accurately

Correlation:

Displacement
in rows and
columns
provide the
E/W and N/S
components of
the ground
deformation

OXVDCOQT—=OD® 1 ~0WO0T

™| Sub-pixel |[™
Correlation

SNR

oQ 3 -

The Signal to
Noise Ratio
assesses the
measure

quality.
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Correlation method

Image correlation:

Matching
| patches of
Satellite image 1 Satellite image 2 images

© 2018. All rights reserved. 15



Geodetic Data for PFDHA

_* 4 earthquakes so far
* n=3,000

* Plan to gather 10 in total of
a range of M,, and tectonic

VP irmez—" & - settings (all strike-slip)

| _-f'f_fl e * n=7,000-8,500

* Data will come from a mix
of:
* sensors
* image resolutions
* matching techniques

Il JFiFis reserved. 16



Geodetic data Field trace mapping Field offsets
(strain map)
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Measuring shear strain

Mapped fault
traces

Iy
~./ OFD=T-(P+9) "ack)

T = total horizontal deformation
S = brittle deformation on the secondary

fault
P = brittle deformation on the principal fault

zone
W = width of total deformation

© 2018. All rights reserved.

Rockwell et al. (2002)
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Different approach for calculating hazard curve

* Geodetic approach is different but analogous to that used for field data

* Problem: We need to constrain two probability terms

/ PFDHA using field data Mapping uncertainty \

3(d > dy),,, = o Plsr # 0|m)\| Pld # O|r,2JP[d > do|r,m,d + ol)k@dr

r Petersen et al. (2011)
« 4

(PFDHA using geodet&c data | This study \W

A(E = go)xyz = a P[ST * 0 | m] P[S > ginelasticl T, Z]PZE = 80| r,m, ginelastic]

et \B
K Probability inelastic strain occurs (i.e., Probability strain excee/d/l
failure of material) some amount of interest

How d&’we coliectstrain profiles? 19



Fault parallel motion

Displacement profiles o= o -

* Fault-parallel displacement
profiles = strain profiles
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Generating strain profiles

* Compile all strain profiles along rupture together

* \We choose a value to:

e Discern what's inelastic vs elastic
And what is noise vs robust Ple > gineasticl 7, 2]
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Probability strain is inelastic

Count number of
profiles that exceed
a given threshold
value

Einelastic = 0-004

Derive empirical
probability strain is
inelastic:

P[E > ginelasticl r, Z]J T
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Estimate second term (prob. of exceedance)

» At each distance we get a distribution =2 fit
lognormal - survivor fn. = exceedance term.
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Product: Hazard curve

Strain Hazard Curve
Fault Slip Rate =1 mm/yr
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 Product: annual exceedance of shear strain at some
distance, not distributed displacement.

* But can integrate over a distance/area of interest
—> total expected dispiacement. 2



Reducing epistemic uncertainty: Asses
effect of... fault zone compression or
extension
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PFDHA for thrust + normal events

 Normal + thrust typically asymmetric HW, FW
* 3D image correlation method is now possible
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Moving away from ergodic PFDHA

* Ergodic system = treat variability in displacement (strain) data measured from
different faults (spatial uncertainty) as an variability over time at a single point
(temporal variation).
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Numerical

ing

Us

Simulations

Next-next Gen PFDHA
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UTM Northing

PFHDA Using Numerical Simulations

* Instead of using variations of faulting from different
earthquakes along strike = to define empirical faulting
probabilities = use numerical simulations

Milliner et al. (2016) Wollherr et al. (2019)
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Conclusions & Future Work

» Geodetic data holds promise for PFDHA:
« Now have adequate image resolution (< 1m resolution)
« Many data points (n>1000)
« Lower uncertainty (0 = 10 cm)
« Moderate number of earthquakes (n = 10)

* More reliable probability models of distributed
faulting

* Future work:
» Develop standard geodetic method

* Asses effects of near-surface geology + fault zone
compression/extension

« Explore PFDHA for thrust and normal faults



